US009473343B2

a2 United States Patent

Barsness et al.

US 9,473,343 B2
*QOct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC PROCESSING UNIT
RELOCATION IN A MULTI-NODAL
ENVIRONMENT BASED ON INCOMING
PHYSICAL DATA

(71) Applicant: International Business Machines

Corporation, Armonk, NY (US)

(72) Eric L. Barsness, Pine Island, MN

(US); Michael J. Branson, Rochester,

MN (US); John M. Santosuosso,

Rochester, MN (US)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

(73) Assignee:

(*) Notice:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 657 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 13/708,942

Filed: Dec. 8, 2012

(65) Prior Publication Data
US 2013/0097323 Al Apr. 18, 2013
Related U.S. Application Data

Continuation of application No. 12/914,249, filed on
Oct. 28, 2010.

(63)

Int. CL.
GO6F 15/173
HO4L 29/08
GO6F 9/50
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(52)

....... HO4L 29/08144 (2013.01); GOGF 9/5033
(2013.01); GOGF 9/5044 (2013.01); HO4L

67/1002 (2013.01)

(58) Field of Classification Search

CPC ... HOAL 29/08144; HO4L 67/1002;
GOG6F 9/5033; GOGF 9/5044
USPC i 709/226

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2003/0105800 Al* 6/2003 Cullenccccevvvinnn. 709/201
2005/0125798 Al* 6/2005 Peterson 718/105
2006/0184837 Al 82006 Al-Omari

2007/0104114 Al 5/2007 Chu et al.

2009/0063501 Al 3/2009 Buckler et al.

2009/0228892 Al* 9/2009 Di Luoffo et al. 718/104

* cited by examiner

Primary Examiner — Tonia L Dollinger

Assistant Examiner — Albert Chiou

(74) Attorney, Agent, or Firm — Martin & Associates,
LLC; Bret J. Petersen

(57) ABSTRACT

A relocation mechanism in a multi-nodal computer environ-
ment dynamically routes processing units in a distributed
computer system based on incoming physical data into the
processing unit. The relocation mechanism makes an initial
location decision to place a processing unit onto a node in
the distributed computer system. The relocation mechanism
monitors physical data flowing into a processing unit or
node and dynamically relocates the processing unit to
another type of node within the ‘cloud’ of nodes based on the
type of physical data or pattern of data flowing into the
processing unit. The relocation mechanism may use one or
more rules with criteria for different data types observed in
the data flow to optimize when to relocate the processing
units.

10 Claims, 6 Drawing Sheets

800

Start Processing Unit (PU)

810
[

v

Sample Data Into The PU

820

v

Analyze Data Characteristics To
Determine Preferred Node Type

830
[

Current Node Is
Preferred Type?

840

Relocate PU In Cloud Based On
The Data Characteristics

850
—

U.S. Patent Oct. 18, 2016 Sheet 1 of 6 US 9,473,343 B2

110 /100
Processor
1/60
) 120
Main Memory ‘)
121 — Operating System
122 — Application
123 —— Processing Unit |
124 — Relocation Mechanism
125 —— Data Stream Sample
126 Node Configuration File
127 — Rules File
~.~ /
| Mass Storage I/F | Display I/F Network I/F
155 1 70
) A
DASD
Display
/ 175 175

FIG. 1

U.S. Patent

Oct. 18,2016 Sheet 2 of 6 US 9,473,343 B2
200
___ 210A
NodeA NodeB |___ 210B
Network 212

1%3

NodeC }+— 210C

FIG. 2

OO0
O0OE

NodeA

010
O
O,
O

210A NodeB 210B

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 3 of 6 US 9,473,343 B2
125
Data Stream Sample AZ
Floating Point Video Data Audio Data Other
Data
k410 k412 k414 \416
126
Node Configuration File 1
510
N TypeA TypeB TypeC
512 514 516 518
~ Node Identifiers | Node Identifiers Node Identifiers
512A 512B 512C
610 127
Rules File \A AZ
, . Encrypted General
Text Rules FP Rules Video Rules | Audio Rules Data Rules | Relocation Rules

k612 L614 k616 L618 k620

FIG. 6

k 622

U.S. Patent Oct. 18, 2016 Sheet 4 of 6 US 9,473,343 B2
Z1O Z14 Z18
NodeA1 799 NodeAZ2 NodeB1
— 1 » PUT : i » PU3 >
7 l | i
\712 | \720
= a
|
! NodeC1 !
'l————>:[PU2 - i
7____I
\.716
Available Nodes
726
r a Y
NodeA3 NodeB2 NodeC1
624
NodeA4 NodeB3 NodeC2

FIG. 7

U.S. Patent Oct. 18, 2016 Sheet 5 of 6 US 9,473,343 B2

(Start) ?O

810
Start Processing Unit (PU) —

v

Sample Data Into The PU —

y

Analyze Data Characteristics To 830
Determine Preferred Node Type

820

840

Yes

Current Node Is
Preferred Type?

850
Relocate PU In Cloud Based On |~

The Data Characteristics

Done

FIG. 8

U.S. Patent

Oct. 18, 2016

Sheet 6 of 6

910

For Each

US 9,473,343 B2

850

Determined
Data Type

Preferred PU 920

For Data, Within
Rules?

940
930

'l
No

Allocate Node

Node Available?
From Pool

950

S

970

Prepare And Start
Necessary PUs On
The Node

Required PUs
Already Running?

960
)

Relocate PU To Node Of Preferred
Type And Reroute Data

FIG. 9

US 9,473,343 B2

1
DYNAMIC PROCESSING UNIT
RELOCATION IN A MULTI-NODAL
ENVIRONMENT BASED ON INCOMING
PHYSICAL DATA

BACKGROUND

1. Technical Field

This disclosure generally relates to computer systems, and
more specifically relates to dynamic processing unit (job)
relocation in a multi-nodal computer system environment
based on incoming physical data.

2. Background Art

Multi-nodal systems and distributed computing systems
are increasingly being employed to overcome the limitations
of traditional applications deployed in standard computing
systems. Distributed computing refers to the use of distrib-
uted systems to solve computational problems. Multi-nodal
computer systems and distributed computing systems as
used herein may be any group or cluster of machines that are
accessible by programmer applications to carry out tasks. A
multi-nodal computing system consists of multiple autono-
mous computers or nodes that communicate through one or
more networks. The multiple nodes in the computing system
can be nodes of a single machine or consist of many
machines connected together as a cluster or cloud of com-
pute nodes. In multi-nodal or distributed computing, a
problem is divided into many tasks, each of which is solved
by one or more computer nodes. Distributed computing in a
multi-nodal environment on a single machine can be exem-
plified by several of today’s computing technologies such as
IBM® Corporation’s Blue Gene®, grid computing, com-
mercial clusters, and IBM® Corporation’s RoadRunner.

These new multi-nodal environments allow individual
computer processing units to be linked to each other thru
new programming paradigms such that a unit of work or a
typical program is parsed out and computed in a distributed
manner. Furthermore this spread of work is often left up to
the system such that software designers have little or no way
of' knowing what pieces of the application or job, referred to
herein as processing units, are running where. Where there
are different nodes in the distributed computing system with
different capabilities, the assignment of applications or pro-
cessing units to the different nodes is important to the overall
efficiency of the distributed system.

BRIEF SUMMARY

The disclosure and claims herein are directed to dynamic
processing unit (job) relocation in a distributed computer
system in a multi-nodal environment based on incoming
physical data into a processing unit on a node. A relocation
mechanism makes an initial relocation decision to place a
processing unit onto a node in the distributed computer
system. The relocation mechanism monitors physical data
flowing into a processing unit or node and dynamically
relocates the processing unit to another type of node within
the multi-nodal system based on the type of physical data or
pattern of data flowing into the processing unit. The relo-
cation mechanism may use one or more rules with criteria
for different data types observed in the data flow to optimize
when to relocate the processing units.

The foregoing and other features and advantages will be
apparent from the following more particular description, as
illustrated in the accompanying drawings.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

The disclosure will be described in conjunction with the
appended drawings, where like designations denote like
elements, and:

FIG. 1 is a block diagram of a computer system with a
relocation mechanism that dynamically routes processing
units in a multi-nodal computer environment based on
incoming physical data as described herein;

FIG. 2 is a block diagram that illustrates three compute
nodes connected in a generic multi-nodal computer envi-
ronment;

FIG. 3 is a block diagram that shows data relationships
between processing units on two compute nodes;

FIG. 4 is a block diagram that shows an example of a data
stream sample from data flowing into a processing unit;

FIG. 5 is a table that represents a node configuration file
used by the relocation mechanism;

FIG. 6 is a table that represents a rules file used by the
relocation mechanism;

FIG. 7 is an example of relocating a processing unit in a
multi-nodal computer environment as claimed herein;

FIG. 8 is a method flow diagram for a relocation mecha-
nism for a multi-nodal computer environment as claimed
herein; and

FIG. 9 is an example of a method flow diagram for a
relocation mechanism to relocate processing units to another
node according to step 850 in FIG. 8.

DETAILED DESCRIPTION

Described herein is a system and method for dynamic
processing unit (job) relocation in a distributed computer
system in a multi-nodal environment based on incoming
physical data into a processing unit on a node. A relocation
mechanism makes an initial relocation decision to place a
processing unit onto a node in the distributed computer
system. The relocation mechanism monitors physical data
flowing into a processing unit and dynamically relocates the
processing unit to another type of node based on the type of
physical data or pattern of data flowing into the processing
unit. The relocation mechanism may use one or more rules
with criteria for different data types observed in the data flow
to optimize when to relocate the processing units.

Referring to FIG. 1, a computer system 100 is one suitable
implementation of a computer system that includes a relo-
cation mechanism as described herein. Computer system
100 is an International Business Machines Corporation
(IBM®) Power System which can run multiple operating
systems including the IBM® 1 operating system. However,
those skilled in the art will appreciate that the disclosure
herein applies equally to any computer system capable of
being connected in a multi-nodal or distributing computing
environment. For example, the computer system 100 could
also represent a single node of a massively parallel computer
such as IBM® Corporation’s Blue Gene® computer system,
or a node of a scalable performance cluster such as a
Beowulf cluster. As shown in FIG. 1, computer system 100
comprises one or more processors 110, a main memory 120,
a mass storage interface 130, a display interface 140, and a
network interface 150. These system components are inter-
connected through the use of a system bus 160. Mass storage
interface 130 is used to connect mass storage devices with
a computer readable or computer recordable medium, such
as direct access storage devices 155, to computer system
100. One specific type of direct access storage device 155 is

US 9,473,343 B2

3

a readable and writable CD-RW drive, which may store data
to and read data from a compact disk (CD) 195.

Main memory 120 preferably contains an operating sys-
tem 121. Operating system 121 is a multitasking operating
system known in the industry as IBM® i operating system;
however, those skilled in the art will appreciate that the spirit
and scope of this disclosure is not limited to any one
operating system. The memory further includes a software
application 122 that comprises one or more processing units
123. The memory 120 includes a relocation mechanism 124
as described herein. The memory 120 may include a data
stream sample 125 that is captured to monitor for changes in
data type as described below. The memory 120 further
includes a node configuration file 126 and a rules file 127
that hold information and rules used by the relocation
mechanism 124 as described herein.

Computer system 100 utilizes well known virtual address-
ing mechanisms that allow the programs of computer system
100 to behave as if they only have access to a large, single
storage entity instead of access to multiple, smaller storage
entities such as main memory 120 and DASD device 155.
Therefore, while operating system 121, application 122,
relocation mechanism 124, data stream sample 125, the node
configuration file 126, and the rules file 127 are shown to
reside in main memory 120, those skilled in the art will
recognize that these items are not necessarily all completely
contained in main memory 120 at the same time. It should
also be noted that the term “memory” is used herein generi-
cally to refer to the entire virtual memory of computer
system 100, and may include the virtual memory of other
computer systems coupled to computer system 100.

Processor 110 may be constructed from one or more
microprocessors and/or integrated circuits. Processor 110
executes program instructions stored in main memory 120.
Main memory 120 stores programs and data that processor
110 may access. When computer system 100 starts up,
processor 110 initially executes the program instructions that
make up operating system 121 and later executes the pro-
gram instructions that make up the application 122 and the
processing unit(s) 123.

Although computer system 100 is shown to contain only
a single processor and a single system bus, those skilled in
the art will appreciate that a relocation mechanism may be
practiced using a computer system that has multiple proces-
sors and/or multiple buses. In addition, the interfaces that are
used preferably each include separate, fully programmed
microprocessors that are used to off-load compute-intensive
processing from processor 110. However, those skilled in the
art will appreciate that these functions may be performed
using [/O adapters as well.

Display interface 140 is used to directly connect one or
more displays 165 to computer system 100. These displays
165, which may be non-intelligent (i.e., dumb) terminals or
fully programmable workstations, are used to provide sys-
tem administrators and users the ability to communicate
with computer system 100. Note, however, that while dis-
play interface 140 is provided to support communication
with one or more displays 165, computer system 100 does
not necessarily require a display 165, because all needed
interaction with users and other processes may occur via
network interface 150, e.g. web client based users.

Network interface 150 is used to connect computer sys-
tem 100 to other computer systems or workstations 175 via
network 170. Network interface 150 broadly represents any
suitable way to interconnect electronic devices, regardless of
whether the network 170 comprises present-day analog
and/or digital techniques or via some networking mecha-

10

15

20

25

30

35

40

45

50

55

60

4

nism of the future. In addition, many different network
protocols can be used to implement a network. These
protocols are specialized computer programs that allow
computers to communicate across a network. TCP/IP
(Transmission Control Protocol/Internet Protocol) is an
example of a suitable network protocol.

FIG. 2 illustrates a block diagram of a generic multi-nodal
computer environment 200. The multi-nodal computer envi-
ronment 200 is shown with three nodes 210A, 2108, 210C
connected with a network 212. The network 212 can be any
suitable network to connect the nodes 210 for distributed
computing. Each node may represent a computer 100 with
some or all the hardware, and memory components as shown
in FIG. 1. Alternatively, each node of the computer system
200 could also represent a single node of a massively
parallel computer such as IBM® Corporation’s Blue Gene®
computer system, or a node of a scalable performance
cluster such as a Beowulf cluster. At least one node prefer-
ably includes a relocation mechanism 124 (FIG. 1) that
allocates processing units to the various nodes as described
and claimed herein.

FIG. 3 is a block diagram that shows data flow between
processing units 123 and the relationship of processing units
on two compute nodes 210A, 210B. In this simple example,
NodeA 210A has 8 processing units 123 and NodeB 210B
has 6 processing units 123 currently executing on the nodes.
Processing units PU1 through PU6 may collectively repre-
sent an application as it executes and passes data either on
a single node or multiple nodes. The arrows between the
processing units 123 indicate the flow of data. Thus data
from PU1 flows to PU2 and then to PU3. Data coming into
a processing unit is processed such that the data flowing to
the next processing unit may be different. Thus as illustrated
in FIG. 3, a processing unit may be communicating data to
processing units on the same node or different nodes. The
relocation mechanism monitors the data flow between pro-
cessing units in order to dynamically route the processing
unit to another node based on the type of physical data or
pattern of data flowing into the processing unit. The data
flowing into a processing unit may be from a processing unit
on the same node or a different node as shown in FIG. 3.

FIG. 4 illustrates a graphical representation of a data
stream sample record 125. The data stream sample record
125 is used by the relocation mechanism 124 to determine
the type of data flowing between processing units as
described herein. The data stream record 125 may be a file
or record that represents data monitored or sampled by the
relocation mechanism 124. The data stream record 125 may
be stored in memory 120 (FIG. 1) or in a data storage device
155 (FIG. 1). The data stream record 125 may include any
number of data types. In the illustrated example, the data
stream record 125 includes the following data types: floating
point data 410, video data 412, audio data 414 and other data
416. The data stream records 125 may be stored in any
suitable format.

FIG. 5 illustrates a table that represents one suitable
implementation of a node configuration file 126 used by the
relocation mechanism 124 (FIG. 1). The node configuration
file 126 may be a table or file of records stored in memory
or in a data storage device. In the illustrated example, the
node configuration file 126 includes a number of node types
510 with an associated list of node identifiers 512. In the
illustrated example shown in FIG. 5 the nodes type are
TypeA 514, TypeB 516 and TypeC 518. A list of node
identifiers 512A, 512B, 512C corresponding to each of the
different node types is stored in the table. The node identi-

US 9,473,343 B2

5

fiers may be any type of node or computer identifier used by
the computer system to identify the physical nodes of the
system.

FIG. 6 illustrates a table that represents one suitable
implementation of a rule file 127 introduced above. The rule
file 127 preferably includes one or more rules 610 with
relocation criteria for the different data types. The relocation
rules 610 are used in conjunction with the preferred nodes
512 by the relocation mechanism 124 to determine where to
relocate the processing units. The rules file 127 may be a
table or file of records stored in memory or in a data storage
device. In the illustrated example shown in FIG. 6 the rules
610 include text rules 612, floating point rules 614, video
rules 616, audio rules 618, encrypted data rules 620 and
general relocation rules 622. The general relocation rules
622 may includes rules that would apply to any type data,
and may also include a default node type indicating the type
of'node that most data should go to if other rules don’t apply.

Again referring to FIG. 6, the rules 610 can be preset or
set up by a system administrator to optimize when to
relocate the processing units. For example, the data specific
rules may include specific thresholds for the amount of data
being sent to the processing unit to justify relocation of the
processing unit. There may also be logic in the rules to cover
sampled data that has more than one type of data or a pattern
of data. The following are some examples of rules:

1. (text rule) If greater than 90% of the sampled data is

text data, then a node of type A is preferred.

2. (video rule) If greater than 50% of the sampled data is
video data, then a node of type B is preferred.

3. (general rule) If greater than 25% of the incoming
“records” sampled contain a particular optional attri-
bute of an image (e.g. a jpeg), then node type C is
preferred.

4. (general rule with pattern of data) If the percentage of
total bytes in the sampled data that is text is greater than
10 times the percentage that is floating point data, then
node type A is preferred, otherwise node type C is
preferred.

Other rules can be similarly crafted for each of the rule

types.

FIG. 7 illustrates an example of a relocation mechanism
for a multi-nodal computer environment relocating a pro-
cessing unit to a different node based on incoming data to the
processing unit as claimed herein. In this example NodeAl
710 of node type “A” has a first processing unit (PU2) 712
processing data and sending data to NodeA2 714, which has
a second processing unit (PU2) 716. The second processing
unit then sends data to a third processing unit (PU3) 720 in
NodeB1 718. The relocation mechanism monitors the data
flowing into the processing units 712, 716, 720. In this
example, we assume that the relocation mechanism samples
the data stream 722 flowing into the second processing unit
and determines that this data includes video data. The
relocation mechanism determines from the node configura-
tion file 126 and the rules files 127 (FIGS. 1 and 5) that the
preferred node type to process video data is a node of node
type “C”. The relocation mechanism then determines there
is an available node (NodeC1) of node type “C” in the pool
of available nodes 726. NodeCl1 is then prepared for execu-
tion and the second processing unit (716) is started on
NodeC1 724. Data from the first processing unit 712 is then
rerouted to the second processing unit 716 now on
NodeC1724.

FIG. 8 shows a method 800 for dynamic job relocation in
a distributed computer system in a multi-nodal environment
based on incoming physical data as claimed herein. The

10

15

20

25

30

35

40

45

50

55

60

65

6

steps in method 800 are preferably performed by the relo-
cation mechanism 124 (FIG. 1), but portions of the method
may also be performed by other software associated with the
computer system. First, start or run a software application,
which causes the processing units of the software applica-
tion to be processed (step 810). Next, monitor the data that
flows in and out of the processing units, preferably by
periodic sampling of the data (step 820). Then analyze data
characteristics of the sampled data and with respect to the
preferred nodes and relocation rules in the node configura-
tion file to determine a preferred node for executing the
processing unit (step 830). If the current node is the pre-
ferred node type (step 840=yes) then the method is done. If
the current node is not the preferred node type (step 840=no)
then relocate the processing unit to a preferred node in the
cloud based on the data characteristics in the sampled data
and the rules in the node configuration file (step 850). The
method is then done.

FIG. 9 shows a method 850 for relocation processing units
to a preferred node in a multi-node cloud based on the data
characteristics in the sampled data. Method 850 is an
example of performing the step 850 in FIG. 8. The steps in
method 850 are preferably performed by the relocation
mechanism 124 (FIG. 1), but portions of the method may
also be performed by other software associated with the
computer system. Method 850 is performed for each data
type determined by analyzing the sampled data in step 830
(step 910). If there is no preferred processing units for the
determined data type within the rules in the node configu-
ration file (step 920=no) then go back to step 910 for the next
data type. If there is a preferred processing unit for the
determined data type within the rules in the node configu-
ration file (step 920=yes) then determine if a preferred node
is available for the determined data type (step 930). If a
preferred node is not available for the determined data type
(step 930=n0) then allocate a node of the preferred type from
the node pool (step 940), then prepare and start the necessary
processing units on the allocated node (step 950) and
relocate the processing unit to a node with the preferred node
type and reroute data flow to the processing unit on the
relocated node (step 960). If a preferred node is available for
the determined data type (step 930=yes) then determine if
the required processing units are already running (step 970).
If the required processing units are already running (step
970=yes) then relocate the processing unit to a node with the
preferred node type and reroute data flow to the processing
unit on the relocated node (step 960) and return to step 910.
If the required processing units are not already running (step
970=n0), then prepare and start the necessary PUs on the
node (step 950) then relocate the processing unit to a node
with the preferred node type and reroute data flow to the
processing unit on the relocated node (step 960) and return
to step 910. The method is done when all the determined
data types have been processed.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in

US 9,473,343 B2

7

the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber,
a portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device. A computer readable signal medium
may include a propagated data signal with computer read-
able program code embodied therein, for example, in base-
band or as part of a carrier wave. Such a propagated signal
may take any of a variety of forms, including, but not limited
to, electro-magnetic, optical, or any suitable combination
thereof. A computer readable signal medium may be any
computer readable medium that is not a computer readable
storage medium and that can communicate, propagate, or
transport a program for use by or in connection with an
instruction execution system, apparatus, or device. Program
code embodied on a computer readable medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a

20

25

35

40

45

50

65

8

local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider). Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer program
instructions may also be stored in a computer readable
medium that can direct a computer, other programmable
data processing apparatus, or other devices to function in a
particular manner, such that the instructions stored in the
computer readable medium produce an article of manufac-
ture including instructions which implement the function/act
specified in the flowchart and/or block diagram block or
blocks. The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.
As described above, a relocation mechanism dynamically
relocates processing units (job) in a distributed computer
system in a multi-nodal environment based on incoming
physical data into a processing unit on a node. The relocation
mechanism monitors physical data flowing into a processing
unit and dynamically relocates the processing unit to another
type of node within the ‘cloud’ of nodes based on the type
of physical data or pattern of data flowing into the process-
ing unit. The enables the multi-nodal system to maximize
efficiency by having processing units that are processing a
specific data type to be executed on a node of the preferred
node for that data.
One skilled in the art will appreciate that many variations
are possible within the scope of the claims. While the
examples herein are described in terms of time, these other
types of thresholds are expressly intended to be included
within the scope of the claims. Thus, while the disclosure is
particularly shown and described above, it will be under-
stood by those skilled in the art that these and other changes
in form and details may be made therein without departing
from the spirit and scope of the claims.
The invention claimed is:
1. A computer-implemented method for relocating pro-
cessing units in a multi-nodal computer system, the method
comprising the steps of:
starting a processing unit on a compute node of the
multi-nodal computer system with a data flow into the
processing unit wherein the processing units are part of
an application executing on the compute node;

sampling the data flowing into the processing unit to
produce sampled data;

US 9,473,343 B2

9

analyzing the sampled data to determine data types in the

sampled data; and

dynamically relocating the processing unit to a different

node of a different node type based on the determined
types of data flowing into the processing unit.

2. The method of claim 1 further comprising the steps of:

for each determined type of data, determining if there is

a preferred node type for processing the data of the
determined type;

determining if there is a node available of the preferred

node type;

where there is no node available of the preferred node

type, allocating a node of the preferred node type, and
preparing and starting a processing unit on the allocated
node; and

dynamically relocating the processing unit to the pre-

ferred node and rerouting the data flow to the preferred
node.

3. The method of claim 1 further comprising the step of:
determining if the required processing units are already
running where there is a node available of the preferred node
type and where they are not already running preparing and
starting a processing unit on the allocated node.

4. The method of claim 1 wherein the step of analyzing
the data to determine the data types includes determining
text data, floating point data, video data, audio data and
encrypted data.

5. The method of claim 1 further comprising a rules file
containing a plurality of relocation rules that defines criteria
for relocating the processing units depending on different
types of data in the data flow.

6. The method of claim 1 further comprising the step of
utilizing a node configuration file containing a preferred
node list for a plurality of preferred node types, and choos-
ing the different node for relocating the processing unit from
the preferred node list corresponding to the preferred node
type.

7. A computer-implemented method for relocating pro-
cessing units in a multi-nodal computer system, the method
comprising the steps of:

starting a processing unit on a compute node of the

multi-nodal computer system with a data flow into the

15

20

25

40

10

processing unit wherein the processing units are part of
an application executing on the compute node;

sampling the data flowing into the processing unit to
produce sampled data;

analyzing the sampled data to determine data types in the

sampled data;

dynamically relocating the processing unit to a different

node of a different node type based on the determined
types of data flowing into the processing unit;

for each determined type of data, determining if there is

a preferred node type for processing the data of the
determined type;

determining if there is a node available of the preferred

node type;

where there is no node available of the preferred node

type, allocating a node of the preferred node type, and
preparing and starting a processing unit on the allocated
node; and

dynamically relocating the processing unit to the pre-

ferred node and rerouting the data flow to the preferred
node; and

determining if the required processing units are already

running where there is a node available of the preferred
node type and where they are not already running
preparing and starting a processing unit on the allocated
node.

8. The method of claim 7 wherein the step of analyzing
the data to determine the data types includes determining
text data, floating point data, video data, audio data and
encrypted data.

9. The method of claim 7 further comprising a rules file
containing a plurality of relocation rules that defines criteria
for relocating the processing units depending on different
types of data in the data flow.

10. The method of claim 7 further comprising the step of
utilizing a node configuration file containing a preferred
node list for a plurality of preferred node types, and choos-
ing the different node for relocating the processing unit from
the preferred node list corresponding to the preferred node

type.

